**Multivariable and Vector Analysis**

by W W L Chen

**Publisher**: Macquarie University 2008**Number of pages**: 203

**Description**:

This set of notes is suitable for an introduction to some of the basic ideas in multivariable and vector analysis: functions of several variables, differentiation, implicit and inverse function theorems, higher order derivatives, double and triple integrals, change of variables, paths, vector fields, integrals over paths, parametrized surfaces, integrals over surfaces, integration theorems.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Vector Analysis Notes**

by

**Matthew Hutton**-

**matthewhutton.com**

Contents: Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series...

(

**3844**views)

**Vector Analysis and the Theory of Relativity**

by

**Francis Dominic Murnaghan**-

**Johns Hopkins press**

This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.

(

**8795**views)

**The Geometry of Vector Calculus**

by

**Tevian Dray, Corinne A. Manogue**-

**Oregon State University**

Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.

(

**5562**views)

**Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis**

by

**Ray M. Bowen, C.-C. Wang**

The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.

(

**12106**views)