Logo

Projective Differential Geometry Old and New

Large book cover: Projective Differential Geometry Old and New

Projective Differential Geometry Old and New
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521831865
ISBN-13: 9780521831864
Number of pages: 281

Description:
Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. This book provides a rapid route for graduate students and researchers to contemplate the frontiers of contemporary research in this classic subject. The authors include exercises and historical and cultural comments relating the basic ideas to a broader context.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Synthetic Differential GeometrySynthetic Differential Geometry
by - Cambridge University Press
Synthetic differential geometry is a method of reasoning in differential geometry and calculus. This book is the second edition of Anders Kock's classical text, many notes have been included commenting on new developments.
(7858 views)
Book cover: Notes on the Atiyah-Singer Index TheoremNotes on the Atiyah-Singer Index Theorem
by - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(5106 views)
Book cover: Algebraic geometry and projective differential geometryAlgebraic geometry and projective differential geometry
by - arXiv
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
(10021 views)
Book cover: Triangles, Rotation, a Theorem and the JackpotTriangles, Rotation, a Theorem and the Jackpot
by - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(4371 views)