**Projective Differential Geometry Old and New**

by V. Ovsienko, S. Tabachnikov

**Publisher**: Cambridge University Press 2004**ISBN/ASIN**: 0521831865**ISBN-13**: 9780521831864**Number of pages**: 281

**Description**:

Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. This book provides a rapid route for graduate students and researchers to contemplate the frontiers of contemporary research in this classic subject. The authors include exercises and historical and cultural comments relating the basic ideas to a broader context.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Discrete Differential Geometry: An Applied Introduction**

by

**M. Desbrun, P. Schroeder, M. Wardetzky**-

**Columbia University**

This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).

(

**8601**views)

**Synthetic Geometry of Manifolds**

by

**Anders Kock**-

**University of Aarhus**

This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.

(

**5419**views)

**Functional Differential Geometry**

by

**Gerald Jay Sussman, Jack Wisdom**-

**MIT**

Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.

(

**5921**views)

**Notes on the Atiyah-Singer Index Theorem**

by

**Liviu I. Nicolaescu**-

**University of Notre Dame**

This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.

(

**4777**views)