**Geometry Unbound**

by Kiran S. Kedlaya

2006**Number of pages**: 142

**Description**:

The original text underlying this book was a set of notes for the Math Olympiad Program, the annual summer program to prepare U.S. high school students for the International Mathematical Olympiad. The original notes were intended to bridge the gap between the knowledge of Euclidean geometry of American IMO prospects and that of their counterparts from other countries. They included a large number of challenging problems culled from Olympiad-level competitions from around the world. In revising the old text, author attempted to usher the reader from Euclidean geometry to the gates of "geometry" as the term is defined by modern mathematicians, using the solving of routine and nonroutine problems as the vehicle for discovery.

Download or read it online for free here:

**Download link**

(0.6MB, PDF)

## Similar books

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**11006**views)

**Mixed Motives**

by

**Marc Levine**-

**American Mathematical Society**

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.

(

**13089**views)

**An Introduction to Semialgebraic Geometry**

by

**Michel Coste**-

**Universite de Rennes**

Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.

(

**11473**views)

**Computations in Algebraic Geometry with Macaulay 2**

by

**D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels**-

**Springer**

This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.

(

**10018**views)