Logo

Notes on Diffy Qs: Differential Equations for Engineers

Large book cover: Notes on Diffy Qs: Differential Equations for Engineers

Notes on Diffy Qs: Differential Equations for Engineers
by

Publisher: Lulu.com
Number of pages: 371

Description:
One semester introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, and the Laplace transform.

Home page url

Download or read it online for free here:
Download link
(3.1MB, PDF)

Similar books

Book cover: Differential Equations From The Algebraic StandpointDifferential Equations From The Algebraic Standpoint
by - The American Mathematical Society
We shall be concerned, in this monograph, with systems of differential equations, ordinary or partial, which are algebraic in the unknowns and their derivatives. The algebraic side of the theory of such systems seems is developed in this book.
(7787 views)
Book cover: An Elementary Treatise On Differential Equations And Their ApplicationsAn Elementary Treatise On Differential Equations And Their Applications
by - G. Bell
The object of this book is to give an account of the central parts of the subject in as simple a form as possible, suitable for those with no previous knowledge of it, and to point out the different directions in which it may be developed.
(8672 views)
Book cover: Elementary Differential Equations with Boundary Value ProblemsElementary Differential Equations with Boundary Value Problems
by - Brooks Cole
Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L ...
(10742 views)
Book cover: Differential EquationsDifferential Equations
by - Lamar University
Contents: Basic Concepts; First Order Differential Equations; Second Order DE; Laplace Transforms; Systems of Differential Equations; Series Solutions; Higher Order DE; Boundary Value Problems and Fourier Series; Partial Differential Equations.
(19157 views)