**Harmonic Function Theory**

by Sheldon Axler, Paul Bourdon, Wade Ramey

**Publisher**: Springer 2001**ISBN/ASIN**: 0387952187**ISBN-13**: 9780387952185**Number of pages**: 270

**Description**:

This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Harmonic Analysis**

by

**Russell Brown**-

**University of Kentucky**

These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.

(

**6422**views)

**Harmonic Analysis**

by

**S.R.S. Varadhan**-

**New York University**

Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. etc...

(

**6633**views)

**Spherical Harmonics in p Dimensions**

by

**Christopher Frye, Costas J. Efthimiou**-

**arXiv**

The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.

(

**5975**views)

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**7452**views)