**Harmonic Function Theory**

by Sheldon Axler, Paul Bourdon, Wade Ramey

**Publisher**: Springer 2001**ISBN/ASIN**: 0387952187**ISBN-13**: 9780387952185**Number of pages**: 270

**Description**:

This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Lectures on Harmonic Analysis**

by

**Thomas Wolff**-

**American Mathematical Society**

An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.

(

**7627**views)

**Introduction to the Theory of Fourier's Series and Integrals**

by

**H. S. Carslaw**-

**Macmillan and co.**

An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.

(

**3124**views)

**Real Harmonic Analysis**

by

**Pascal Auscher, Lashi Bandara**-

**ANU eView**

This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.

(

**2559**views)

**Lectures on Potential Theory**

by

**M. Brelot**-

**Tata Institute of Fundamental Research**

In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.

(

**6282**views)