Harmonic Function Theory
by Sheldon Axler, Paul Bourdon, Wade Ramey
Publisher: Springer 2001
ISBN/ASIN: 0387952187
ISBN-13: 9780387952185
Number of pages: 270
Description:
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem.
Download or read it online for free here:
Download link
(1.4MB, PDF)
Similar books

by John P. Boyd - Dover Publications
The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.
(18218 views)

by A. Zygmund, et al. - Princeton University Press
In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.
(6582 views)

by M. Brelot - Tata Institute of Fundamental Research
In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.
(8319 views)

by Pascal Auscher, Lashi Bandara - ANU eView
This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.
(4793 views)