**Harmonic Function Theory**

by Sheldon Axler, Paul Bourdon, Wade Ramey

**Publisher**: Springer 2001**ISBN/ASIN**: 0387952187**ISBN-13**: 9780387952185**Number of pages**: 270

**Description**:

This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Chebyshev and Fourier Spectral Methods**

by

**John P. Boyd**-

**Dover Publications**

The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.

(

**18218**views)

**Contributions to Fourier Analysis**

by

**A. Zygmund, et al.**-

**Princeton University Press**

In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

(

**6582**views)

**Lectures on Potential Theory**

by

**M. Brelot**-

**Tata Institute of Fundamental Research**

In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.

(

**8319**views)

**Real Harmonic Analysis**

by

**Pascal Auscher, Lashi Bandara**-

**ANU eView**

This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.

(

**4793**views)