**Harmonic Function Theory**

by Sheldon Axler, Paul Bourdon, Wade Ramey

**Publisher**: Springer 2001**ISBN/ASIN**: 0387952187**ISBN-13**: 9780387952185**Number of pages**: 270

**Description**:

This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem**

by

**J. Delsarte**-

**Tata Institute of Fundamental Research**

Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.

(

**4476**views)

**Lectures on Harmonic Analysis**

by

**Thomas Wolff**-

**American Mathematical Society**

An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.

(

**5489**views)

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**5983**views)

**Contributions to Fourier Analysis**

by

**A. Zygmund, et al.**-

**Princeton University Press**

In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

(

**2543**views)