**Lectures on Symplectic Geometry**

by Ana Cannas da Silva

**Publisher**: Springer 2006**ISBN/ASIN**: 3540421955**ISBN-13**: 9783540421955**Number of pages**: 225

**Description**:

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. From an introductory chapter of symplectic forms and symplectic algebra, the book moves on to many of the subjects that serve as the basis for current research: symplectomorphisms, Lagrangian submanifolds, the Moser theorems, Darboux-Moser-Weinstein theory, almost complex structures, KAhler structures, Hamiltonian mechanics, symplectic reduction, etc.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Introduction to Differential Topology, de Rham Theory and Morse Theory**

by

**Michael Muger**-

**Radboud University**

Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.

(

**7105**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6474**views)

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**6921**views)

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**13072**views)