Lectures on Symplectic Geometry

Large book cover: Lectures on Symplectic Geometry

Lectures on Symplectic Geometry

Publisher: Springer
ISBN/ASIN: 3540421955
ISBN-13: 9783540421955
Number of pages: 225

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. From an introductory chapter of symplectic forms and symplectic algebra, the book moves on to many of the subjects that serve as the basis for current research: symplectomorphisms, Lagrangian submanifolds, the Moser theorems, Darboux-Moser-Weinstein theory, almost complex structures, KAhler structures, Hamiltonian mechanics, symplectic reduction, etc.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
Book cover: Ricci Flow and the Poincare ConjectureRicci Flow and the Poincare Conjecture
by - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.