Logo

Lectures on Symplectic Geometry

Large book cover: Lectures on Symplectic Geometry

Lectures on Symplectic Geometry
by

Publisher: Springer
ISBN/ASIN: 3540421955
ISBN-13: 9783540421955
Number of pages: 225

Description:
An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. From an introductory chapter of symplectic forms and symplectic algebra, the book moves on to many of the subjects that serve as the basis for current research: symplectomorphisms, Lagrangian submanifolds, the Moser theorems, Darboux-Moser-Weinstein theory, almost complex structures, KAhler structures, Hamiltonian mechanics, symplectic reduction, etc.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Symplectic GeometrySymplectic Geometry
by - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(8058 views)
Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
by
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
(9142 views)
Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(5668 views)
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
(6536 views)