Logo

Introduction to Quantum Noise, Measurement and Amplification

Small book cover: Introduction to Quantum Noise, Measurement and Amplification

Introduction to Quantum Noise, Measurement and Amplification
by

Publisher: arXiv
Number of pages: 102

Description:
The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: Lectures on the Quantum Hall EffectLectures on the Quantum Hall Effect
by - University of Cambridge
These lectures describe the basic theoretical structures underlying the quantum Hall effect. The focus is on the interplay between microscopic wavefunctions, long-distance effective Chern-Simons theories, and the modes which live on the boundary.
(2015 views)
Book cover: Introduction to Computational Quantum MechanicsIntroduction to Computational Quantum Mechanics
by - arXiv
This document is aimed at advanced students of physics who are familiar with the concepts and notations of quantum mechanics. It tries to bridge the gap between simple analytic calculations and complicated large-scale computations.
(2345 views)
Book cover: Quantization is a MysteryQuantization is a Mystery
by - arXiv
Expository notes which combine a historical survey of the development of quantum physics with a review of selected mathematical topics in quantization theory (addressed to students that are not complete novices in quantum mechanics).
(4866 views)
Book cover: Lecture Notes in Quantum MechanicsLecture Notes in Quantum Mechanics
by - arXiv
These lecture notes cover undergraduate textbook topics and also additional advanced topics: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; etc.
(10721 views)