**Space, Time and Gravitation: An Outline of the General Relativity Theory**

by Arthur Stanley Eddington

**Publisher**: Cambridge University Press 1920**Number of pages**: 219

**Description**:

The author gives an account of general relativity theory without introducing anything very technical in the way of mathematics, physics, or philosophy. Although primarily designed for readers without technical knowledge of the subject, it is hoped that the book may also appeal to those who have gone into the subject more deeply.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Recent Developments in Gravitational Collapse and Spacetime Singularities**

by

**Pankaj S. Joshi, Daniele Malafarina**-

**arXiv**

The research of recent years has provided considerable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. In this text, the authors discuss several of these developments here.

(

**5984**views)

**Mass and Angular Momentum in General Relativity**

by

**J.L. Jaramillo, E. Gourgoulhon**-

**arXiv**

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.

(

**4814**views)

**General Covariance and the Foundations of General Relativity**

by

**John D Norton**-

**University of Pittsburgh**

This text reviews the development of Einstein's thought on general covariance (the fundamental physical principle of GTR), its relation to the foundations of general relativity and the evolution of the continuing debate over his viewpoint.

(

**5791**views)

**Semi-Riemann Geometry and General Relativity**

by

**Shlomo Sternberg**

Course notes for an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.

(

**13029**views)