Logo

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Large book cover: The Elements of Statistical Learning: Data Mining, Inference, and Prediction

The Elements of Statistical Learning: Data Mining, Inference, and Prediction
by

Publisher: Springer
ISBN/ASIN: 0387848576
ISBN-13: 9780387848570
Number of pages: 764

Description:
This book is an attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, the authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties. This book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

Home page url

Download or read it online for free here:
Download link
(8.2MB, PDF)

Similar books

Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(5267 views)
Book cover: Machine Learning: The Complete GuideMachine Learning: The Complete Guide
- Wikipedia
Contents: Introduction and Main Principles; Background and Preliminaries; Knowledge discovery in Databases; Reasoning; Search Methods; Statistics; Main Learning Paradigms; Classification Tasks; Online Learning; Semi-supervised learning; etc.
(7901 views)
Book cover: A Course in Machine LearningA Course in Machine Learning
by - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(14112 views)
Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(5822 views)