Logo

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Large book cover: The Elements of Statistical Learning: Data Mining, Inference, and Prediction

The Elements of Statistical Learning: Data Mining, Inference, and Prediction
by

Publisher: Springer
ISBN/ASIN: 0387848576
ISBN-13: 9780387848570
Number of pages: 764

Description:
This book is an attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, the authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties. This book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

Home page url

Download or read it online for free here:
Download link
(8.2MB, PDF)

Similar books

Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(25406 views)
Book cover: A Course in Machine LearningA Course in Machine Learning
by - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(17060 views)
Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(7363 views)
Book cover: Learning Deep Architectures for AILearning Deep Architectures for AI
by - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(5307 views)