The Elements of Statistical Learning: Data Mining, Inference, and Prediction
by T. Hastie, R. Tibshirani, J. Friedman
Publisher: Springer 2009
ISBN/ASIN: 0387848576
ISBN-13: 9780387848570
Number of pages: 764
Description:
This book is an attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, the authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties. This book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.
Download or read it online for free here:
Download link
(8.2MB, PDF)
Similar books

by Alex Smola, S.V.N. Vishwanathan - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(10474 views)

by Dimitri P. Bertsekas - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(10500 views)

by Amnon Shashua - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(23249 views)

by Patrick Hebron - O'Reilly Media
This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.
(7717 views)