**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by T. Hastie, R. Tibshirani, J. Friedman

**Publisher**: Springer 2009**ISBN/ASIN**: 0387848576**ISBN-13**: 9780387848570**Number of pages**: 764

**Description**:

This book is an attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, the authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties. This book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

Download or read it online for free here:

**Download link**

(8.2MB, PDF)

## Similar books

**Reinforcement Learning**

by

**C. Weber, M. Elshaw, N. M. Mayer**-

**InTech**

This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.

(

**14845**views)

**Machine Learning for Designers**

by

**Patrick Hebron**-

**O'Reilly Media**

This book introduces you to contemporary machine learning systems and helps you integrate machine-learning capabilities into your user-facing designs. Patrick Hebron explains how machine-learning applications can affect the way you design websites.

(

**1714**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**-

**OTexts**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**3941**views)

**Information Theory, Inference, and Learning Algorithms**

by

**David J. C. MacKay**-

**Cambridge University Press**

A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.

(

**18669**views)