**Linear Algebra Examples C-1: Linear equations, matrices and determinants**

by Leif Mejlbro

**Publisher**: BookBoon 2009**ISBN-13**: 9788776815066**Number of pages**: 113

**Description**:

The book is a collection of solved problems in linear algebra, this first volume covers linear equations, matrices and determinants. All examples are solved, and the solutions usually consist of step-by-step instructions, and are designed to assist students in methodically solving problems.

Download or read it online for free here:

**Download link**

(3.1MB, PDF)

## Similar books

**Linear Algebra C-2: Geometrical Vectors, Vector Spaces and Linear Maps**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear algebra. The second volume covers geometrical vectors, vector spaces and linear maps. All examples are solved, and the solutions usually consist of step-by-step instructions.

(

**9211**views)

**The Hermitian Two Matrix Model with an Even Quartic Potential**

by

**M. Duits, A.B.J. Kuijlaars, M. Yue Mo**-

**American Mathematical Society**

The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices.

(

**1054**views)

**Notes on Linear Algebra**

by

**Peter J. Cameron**-

**Queen Mary, University of London**

On the theoretical side, we deal with vector spaces, linear maps, and bilinear forms. On the practical side, the subject is really about one thing: matrices. This module is a mixture of abstract theory and concrete calculations with matrices.

(

**6610**views)

**Lectures on Linear Algebra and Matrices**

by

**G. Donald Allen**-

**Texas A&M University**

Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.

(

**9300**views)