Logo

Probability, Geometry and Integrable Systems

Large book cover: Probability, Geometry and Integrable Systems

Probability, Geometry and Integrable Systems
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521895278
ISBN-13: 9780521895279
Number of pages: 428

Description:
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Noncompact Harmonic ManifoldsNoncompact Harmonic Manifolds
by - arXiv
We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.
(3889 views)
Book cover: Introduction to Homological GeometryIntroduction to Homological Geometry
by - arXiv
This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.
(5827 views)
Book cover: Orthonormal Basis in Minkowski SpaceOrthonormal Basis in Minkowski Space
by - arXiv
In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.
(6106 views)
Book cover: Ricci-Hamilton Flow on SurfacesRicci-Hamilton Flow on Surfaces
by - Tsinghua University
Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.
(5803 views)