**Probability, Geometry and Integrable Systems**

by Mark Pinsky, Bjorn Birnir

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521895278**ISBN-13**: 9780521895279**Number of pages**: 428

**Description**:

The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**12030**views)

**Ricci Flow and the Poincare Conjecture**

by

**John Morgan, Gang Tian**-

**American Mathematical Society**

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

(

**9233**views)

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**8029**views)

**An introductory course in differential geometry and the Atiyah-Singer index theorem**

by

**Paul Loya**-

**Binghamton University**

This is a lecture-based class on the Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.

(

**8141**views)