Logo

Probability, Geometry and Integrable Systems

Large book cover: Probability, Geometry and Integrable Systems

Probability, Geometry and Integrable Systems
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521895278
ISBN-13: 9780521895279
Number of pages: 428

Description:
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Global Theory Of Minimal SurfacesGlobal Theory Of Minimal Surfaces
by - American Mathematical Society
The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.
(6615 views)
Book cover: Projective Differential Geometry Of Curves And SurfacesProjective Differential Geometry Of Curves And Surfaces
by - The University Of Chicago Press
Projective Differential Geometry is largely a product of the first three decades of the twentieth century. The theory has been developed in five or more different languages, by three or four well-recognized methods, in various and sundry notations.
(1154 views)
Book cover: An Introduction to Gaussian GeometryAn Introduction to Gaussian Geometry
by - Lund University
These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.
(7131 views)
Book cover: Ricci-Hamilton Flow on SurfacesRicci-Hamilton Flow on Surfaces
by - Tsinghua University
Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.
(5355 views)