**Probability, Geometry and Integrable Systems**

by Mark Pinsky, Bjorn Birnir

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521895278**ISBN-13**: 9780521895279**Number of pages**: 428

**Description**:

The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**6615**views)

**Global Theory Of Minimal Surfaces**

by

**David Hoffman**-

**American Mathematical Society**

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.

(

**6307**views)

**A Geometric Approach to Differential Forms**

by

**David Bachman**-

**arXiv**

This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.

(

**9079**views)

**Synthetic Differential Geometry**

by

**Anders Kock**-

**Cambridge University Press**

Synthetic differential geometry is a method of reasoning in differential geometry and calculus. This book is the second edition of Anders Kock's classical text, many notes have been included commenting on new developments.

(

**8197**views)