Probability, Geometry and Integrable Systems
by Mark Pinsky, Bjorn Birnir
Publisher: Cambridge University Press 2007
ISBN/ASIN: 0521895278
ISBN-13: 9780521895279
Number of pages: 428
Description:
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books
Combinatorial Geometry with Application to Field Theory
by Linfan Mao - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(15759 views)
by Linfan Mao - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(15759 views)
Introduction to Evolution Equations in Geometry
by Bianca Santoro - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(10602 views)
by Bianca Santoro - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(10602 views)
Notes on the Atiyah-Singer Index Theorem
by Liviu I. Nicolaescu - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(11109 views)
by Liviu I. Nicolaescu - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(11109 views)
Functional Differential Geometry
by Gerald Jay Sussman, Jack Wisdom - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(11866 views)
by Gerald Jay Sussman, Jack Wisdom - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(11866 views)