**A Sampler of Riemann-Finsler Geometry**

by D. Bao, R. Bryant, S. Chern, Z. Shen

**Publisher**: Cambridge University Press 2004**ISBN/ASIN**: 0521831814**ISBN-13**: 9780521831819**Number of pages**: 376

**Description**:

Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. This book presents an expository account of seven important topics in Riemann-Finsler geometry, ones which have recently undergone significant development but have not had a detailed pedagogical treatment elsewhere. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles, and include a variety of instructive examples.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity**

by

**Leonor Godinho, Jose Natario**

Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

(

**3832**views)

**Riemann Surfaces, Dynamics and Geometry**

by

**Curtis McMullen**-

**Harvard University**

This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.

(

**9340**views)

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**9042**views)

**An Introduction to Riemannian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.

(

**9305**views)