A Sampler of Riemann-Finsler Geometry
by D. Bao, R. Bryant, S. Chern, Z. Shen
Publisher: Cambridge University Press 2004
ISBN/ASIN: 0521831814
ISBN-13: 9780521831819
Number of pages: 376
Description:
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. This book presents an expository account of seven important topics in Riemann-Finsler geometry, ones which have recently undergone significant development but have not had a detailed pedagogical treatment elsewhere. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles, and include a variety of instructive examples.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books
by Subenoy Chakraborty - arXiv.org
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.
(3254 views)
by David R. Wilkins - Trinity College, Dublin
From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.
(11793 views)
by Curtis McMullen - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(14616 views)
by Bang-Yen Chen - arXiv
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.
(7269 views)