Logo

A Sampler of Riemann-Finsler Geometry

Large book cover: A Sampler of Riemann-Finsler Geometry

A Sampler of Riemann-Finsler Geometry
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521831814
ISBN-13: 9780521831819
Number of pages: 376

Description:
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. This book presents an expository account of seven important topics in Riemann-Finsler geometry, ones which have recently undergone significant development but have not had a detailed pedagogical treatment elsewhere. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles, and include a variety of instructive examples.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(4507 views)
Book cover: Riemannian GeometryRiemannian Geometry
by
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(3948 views)
Book cover: Riemann Surfaces, Dynamics and GeometryRiemann Surfaces, Dynamics and Geometry
by - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(9759 views)
Book cover: Riemannian Submanifolds: A SurveyRiemannian Submanifolds: A Survey
by - arXiv
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.
(3345 views)