**The Eightfold Way: The Beauty of Klein's Quartic Curve**

by Silvio Levy

**Publisher**: Cambridge University Press 1999**ISBN/ASIN**: 0521660661**ISBN-13**: 9780521660662**Number of pages**: 331

**Description**:

The German mathematician Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry, the maximum possible degree of symmetry for any surface of its type. This volume explores the rich tangle of properties and theories surrounding this multiform object.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**The Elements of Non-Euclidean Geometry**

by

**D.M.Y. Sommerville**-

**G.Bell & Sons Ltd.**

Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.

(

**6308**views)

**Hyperbolic Geometry**

by

**J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry**-

**MSRI**

These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.

(

**5294**views)

**Geometry with an Introduction to Cosmic Topology**

by

**Mike Hitchman**

This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.

(

**2078**views)

**Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems**

by

**John William Withers**-

**Open Court Publishing Co.**

The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...

(

**3365**views)