Logo

The Eightfold Way: The Beauty of Klein's Quartic Curve

The Eightfold Way: The Beauty of Klein's Quartic Curve
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521660661
ISBN-13: 9780521660662
Number of pages: 331

Description:
The German mathematician Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry, the maximum possible degree of symmetry for any surface of its type. This volume explores the rich tangle of properties and theories surrounding this multiform object.

Home page url

Download or read it online for free here:
Download link
(multiple PDF,PS files)

Similar books

Book cover: The Elements Of Non-Euclidean GeometryThe Elements Of Non-Euclidean Geometry
by - Oxford At The Clarendon Press
Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.
(8687 views)
Book cover: The Elements of Non-Euclidean Plane Geometry and TrigonometryThe Elements of Non-Euclidean Plane Geometry and Trigonometry
by - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(5914 views)
Book cover: Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical SystemsEuclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems
by - Open Court Publishing Co.
The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...
(3951 views)
Book cover: The Elements of Non-Euclidean GeometryThe Elements of Non-Euclidean Geometry
by - G.Bell & Sons Ltd.
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.
(6941 views)