**The Eightfold Way: The Beauty of Klein's Quartic Curve**

by Silvio Levy

**Publisher**: Cambridge University Press 1999**ISBN/ASIN**: 0521660661**ISBN-13**: 9780521660662**Number of pages**: 331

**Description**:

The German mathematician Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry, the maximum possible degree of symmetry for any surface of its type. This volume explores the rich tangle of properties and theories surrounding this multiform object.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**The Elements Of Non-Euclidean Geometry**

by

**Julian Lowell Coolidge**-

**Oxford At The Clarendon Press**

Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.

(

**8687**views)

**The Elements of Non-Euclidean Plane Geometry and Trigonometry**

by

**Horatio Scott Carslaw**-

**Longmans, Green and co.**

In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.

(

**5914**views)

**Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems**

by

**John William Withers**-

**Open Court Publishing Co.**

The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...

(

**3951**views)

**The Elements of Non-Euclidean Geometry**

by

**D.M.Y. Sommerville**-

**G.Bell & Sons Ltd.**

Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.

(

**6941**views)