**Flavors of Geometry**

by Silvio Levy

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 0521629624**ISBN-13**: 9780521629621**Number of pages**: 208

**Description**:

This book collects accessible lectures on four geometrically flavored fields of mathematics that have experienced great development in recent years: hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture course start with elementary concepts, proceeds through highlights of the field, and concludes with a taste of advanced material.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**The Fourth Dimension**

by

**Charles Howard Hinton**-

**S. Sonnenschein & Co.**

C. H. Hinton discusses the subject of the higher dimensionality of space, his aim being to avoid mathematical subtleties and technicalities, and thus enable his argument to be followed by readers who are not sufficiently conversant with mathematics.

(

**4004**views)

**The Radon Transform**

by

**Sigurdur Helgason**-

**Birkhauser Boston**

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications.

(

**12225**views)

**Geometry and Group Theory**

by

**Christopher Pope**-

**Texas A&M University**

Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.

(

**17294**views)

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**15884**views)