**Fields and Galois Theory**

by J. S. Milne

2008**Number of pages**: 111

**Description**:

A concise treatment of Galois theory and the theory of fields, including transcendence degrees and infinite Galois extensions. Contents: Basic definitions and results. Splitting fields; multiple roots. The fundamental theorem of Galois theory. Computing Galois groups. Applications of Galois theory. Algebraic closures. Infinite Galois theory. Transcendental Extensions.

Download or read it online for free here:

**Download link**

(940KB, PDF)

## Similar books

**Lectures on the Algebraic Theory of Fields**

by

**K.G. Ramanathan**-

**Tata Institute of Fundamental Research**

These lecture notes on Field theory are aimed at providing the beginner with an introduction to algebraic extensions, algebraic function fields, formally real fields and valuated fields. We assume a familiarity with group theory and vector spaces.

(

**7184**views)

**Galois Theory**

by

**Miles Reid**-

**University of Warwick**

The author discusses the problem of solutions of polynomial equations both in explicit terms and in terms of abstract algebraic structures. The course demonstrates the tools of abstract algebra as applied to a meaningful problem.

(

**11465**views)

**Galois Theory: Lectures Delivered at the University of Notre Dame**

by

**Emil Artin**-

**University of Notre Dame**

The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.

(

**2168**views)

**Lectures On Galois Cohomology of Classical Groups**

by

**M. Kneser**-

**Tata Institute of Fundamental Research**

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.

(

**6034**views)