Logo

Groupoids and Smarandache Groupoids

Large book cover: Groupoids and Smarandache Groupoids

Groupoids and Smarandache Groupoids
by

Publisher: American Research Press
ISBN/ASIN: 1931233616
ISBN-13: 9781931233613
Number of pages: 115

Description:
This book aims to give a systematic development of the basic non-associative algebraic structures viz. Smarandache groupoids. Smarandache groupoids exhibits simultaneously the properties of a semigroup and a groupoid. Such a combined study of an associative and a non associative structure has not been so far carried out.

Download or read it online for free here:
Download link
(570KB, PDF)

Similar books

Book cover: Representation Theory of Compact GroupsRepresentation Theory of Compact Groups
by - Aalto TKK
Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.
(9848 views)
Book cover: Thin Groups and Superstrong ApproximationThin Groups and Superstrong Approximation
by - Cambridge University Press
This book focuses on recent developments concerning various quantitative aspects of thin groups. It provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics.
(5240 views)
Book cover: Smarandache SemigroupsSmarandache Semigroups
by - American Research Press
The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.
(9097 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(11576 views)