
Introduction to Machine Learning
by Amnon Shashua
Publisher: arXiv 2009
Number of pages: 109
Description:
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
Download or read it online for free here:
Download link
(680KB, PDF)
Similar books
Machine Learningby Abdelhamid Mellouk, Abdennacer Chebira - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(18217 views)
Statistical Learning and Sequential Predictionby Alexander Rakhlin, Karthik Sridharan - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(8184 views)
Machine Learning, Neural and Statistical Classificationby D. Michie, D. J. Spiegelhalter - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(30655 views)
An Introductory Study on Time Series Modeling and Forecastingby Ratnadip Adhikari, R. K. Agrawal - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(13782 views)