**Introduction to Machine Learning**

by Amnon Shashua

**Publisher**: arXiv 2009**Number of pages**: 109

**Description**:

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

Download or read it online for free here:

**Download link**

(680KB, PDF)

## Similar books

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**4230**views)

**A Course in Machine Learning**

by

**Hal DaumÃ© III**-

**ciml.info**

Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.

(

**14105**views)

**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by

**T. Hastie, R. Tibshirani, J. Friedman**-

**Springer**

This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.

(

**33251**views)

**Understanding Machine Learning: From Theory to Algorithms**

by

**Shai Shalev-Shwartz, Shai Ben-David**-

**Cambridge University Press**

This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.

(

**4669**views)