Logo

Introduction to Homological Geometry

Small book cover: Introduction to Homological Geometry

Introduction to Homological Geometry
by

Publisher: arXiv

Description:
This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Home page url

Download or read it online for free here:
Download link 1
Download link 2

(multiple PDF files)

Similar books

Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(8198 views)
Book cover: Projective and Polar SpacesProjective and Polar Spaces
by - Queen Mary College
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.
(6804 views)
Book cover: Lectures on Calabi-Yau and Special Lagrangian GeometryLectures on Calabi-Yau and Special Lagrangian Geometry
by - arXiv
An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.
(7117 views)
Book cover: Lectures on Fibre Bundles and Differential GeometryLectures on Fibre Bundles and Differential Geometry
by - Tata Institute of Fundamental Research
From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).
(5203 views)