**Introduction to Homological Geometry**

by Martin A. Guest

**Publisher**: arXiv 2001

**Description**:

This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Download or read it online for free here:

**Download link 1**

**Download link 2**

(multiple PDF files)

## Similar books

**Lectures on Fibre Bundles and Differential Geometry**

by

**J.L. Koszul**-

**Tata Institute of Fundamental Research**

From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).

(

**6831**views)

**Exterior Differential Systems**

by

**Robert L. Bryant, et al.**-

**MSRI**

An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It includes both the theory and applications.

(

**3058**views)

**Triangles, Rotation, a Theorem and the Jackpot**

by

**Dave Auckly**-

**arXiv**

This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.

(

**5811**views)

**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by

**Dominic Joyce**-

**arXiv**

An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

(

**9201**views)