Logo

Introduction to Homological Geometry

Small book cover: Introduction to Homological Geometry

Introduction to Homological Geometry
by

Publisher: arXiv

Description:
This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Home page url

Download or read it online for free here:
Download link 1
Download link 2

(multiple PDF files)

Similar books

Book cover: Orthonormal Basis in Minkowski SpaceOrthonormal Basis in Minkowski Space
by - arXiv
In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.
(5109 views)
Book cover: Gauge Theory for Fiber BundlesGauge Theory for Fiber Bundles
by - Universitaet Wien
Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...
(4391 views)
Book cover: Functional Differential GeometryFunctional Differential Geometry
by - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(6417 views)
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(8454 views)