**Introduction to Homological Geometry**

by Martin A. Guest

**Publisher**: arXiv 2001

**Description**:

This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Download or read it online for free here:

**Download link 1**

**Download link 2**

(multiple PDF files)

## Similar books

**Orthonormal Basis in Minkowski Space**

by

**Aleks Kleyn, Alexandre Laugier**-

**arXiv**

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.

(

**5109**views)

**Gauge Theory for Fiber Bundles**

by

**Peter W. Michor**-

**Universitaet Wien**

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...

(

**4391**views)

**Functional Differential Geometry**

by

**Gerald Jay Sussman, Jack Wisdom**-

**MIT**

Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.

(

**6417**views)

**The Convenient Setting of Global Analysis**

by

**Andreas Kriegl, Peter W. Michor**-

**American Mathematical Society**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.

(

**8454**views)