**Surfing on the ocean of numbers**

by Henry Ibstedt

**Publisher**: Erhus University Press 1997**ISBN/ASIN**: 187958557X**ISBN-13**: 9781879585577**Number of pages**: 76

**Description**:

In this book, Henry Ibstedt takes us on a journey where computers are used to explore the solutions to some simple problems in number theory. Very little is proven in the book, the emphasis is on the statement of a problem and the examination of the solutions for numbers in a selected range. Many of the problems are in the very hard to impossible category, although you never really know about problems in number theory.

Download or read it online for free here:

**Download link**

(2.8MB, PDF)

## Similar books

**A Computational Introduction to Number Theory and Algebra**

by

**Victor Shoup**-

**Cambridge University Press**

This introductory book emphasises algorithms and applications, such as cryptography and error correcting codes. It is accessible to a broad audience. Prerequisites are a typical undergraduate course in calculus and some experience in doing proofs.

(

**35354**views)

**Modular Forms: A Computational Approach**

by

**William A. Stein**-

**American Mathematical Society**

This book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments.

(

**6150**views)

**Smooth Numbers: Computational Number Theory and Beyond**

by

**Andrew Granville**-

**Universite de Montreal**

The analysis of many number theoretic algorithms turns on the role played by integers which have only small prime factors -- 'smooth numbers'. It is important to have accurate estimates for the number of smooth numbers in various sequences.

(

**5137**views)

**Algorithmic Number Theory**

by

**J.P. Buhler, P. Stevenhagen**-

**Cambridge University Press**

This text provides a comprehensive introduction to algorithmic number theory for beginning graduate students. It covers the fundamental algorithms of elementary number theory, lattice basis reduction, elliptic curves, algebraic number fields, etc.

(

**11158**views)