**Lecture Notes on General Relativity**

by Matthias Blau

**Publisher**: Universitaet Bern 2014**Number of pages**: 928

**Description**:

The first half of this course will be dedicated to developing the machinery (of tensor calculus and Riemannian geometry) required to describe physics in a curved space time, i.e. in a gravitational field. In the second half of this course, we will then turn to various applications of General Relativity. Foremost among them is the description of the classical predictions of General Relativity and their experimental verification.

Download or read it online for free here:

**Download link**

(5.7MB, PDF)

## Similar books

**The Mathematical Theory of Relativity**

by

**Arthur Stanley Eddington**-

**Cambridge University Press**

Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.

(

**5307**views)

**Lecture Notes on General Relativity**

by

**Sean M. Carroll**-

**University of California**

Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.

(

**14820**views)

**Spacetime Geometry and General Relativity**

by

**Neil Lambert**-

**King's College London**

This course is meant as introduction to what is widely considered to be the most beautiful and imaginative physical theory ever devised: General Relativity. It is assumed that you have a reasonable knowledge of Special Relativity as well as tensors.

(

**8821**views)

**Partial Differential Equations of Physics**

by

**Robert Geroch**-

**arXiv**

All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.

(

**15576**views)