**Information Theory, Excess Entropy and Statistical Complexity**

by David Feldman

**Publisher**: College of the Atlantic 2002**Number of pages**: 49

**Description**:

This e-book is a brief tutorial on information theory, excess entropy and statistical complexity. From the table of contents: Background in Information Theory; Entropy Density and Excess Entropy; Computational Mechanics.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Information Theory, Inference, and Learning Algorithms**

by

**David J. C. MacKay**-

**Cambridge University Press**

A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.

(

**20371**views)

**Data Compression Explained**

by

**Matt Mahoney**-

**mattmahoney.net**

This book is for the reader who wants to understand how data compression works, or who wants to write data compression software. Prior programming ability and some math skills will be needed. This book is intended to be self contained.

(

**6101**views)

**Generalized Information Measures and Their Applications**

by

**Inder Jeet Taneja**-

**Universidade Federal de Santa Catarina**

Contents: Shannon's Entropy; Information and Divergence Measures; Entropy-Type Measures; Generalized Information and Divergence Measures; M-Dimensional Divergence Measures and Their Generalizations; Unified (r,s)-Multivariate Entropies; etc.

(

**6438**views)

**A primer on information theory, with applications to neuroscience**

by

**Felix Effenberger**-

**arXiv**

This chapter is supposed to give a short introduction to the fundamentals of information theory, especially suited for people having a less firm background in mathematics and probability theory. The focus will be on neuroscientific topics.

(

**4634**views)