Logo

An introductory course in differential geometry and the Atiyah-Singer index theorem

Small book cover: An introductory course in differential geometry and the Atiyah-Singer index theorem

An introductory course in differential geometry and the Atiyah-Singer index theorem
by

Publisher: Binghamton University
Number of pages: 137

Description:
This is a lecture-based class on the celebrated Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.

This document is no more available for free.

Similar books

Book cover: Discrete Differential Geometry: An Applied IntroductionDiscrete Differential Geometry: An Applied Introduction
by - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(9435 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(6697 views)
Book cover: Introduction to Homological GeometryIntroduction to Homological Geometry
by - arXiv
This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.
(5172 views)
Book cover: Comparison GeometryComparison Geometry
by - Cambridge University Press
This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach.
(6769 views)