Logo

An introductory course in differential geometry and the Atiyah-Singer index theorem

Small book cover: An introductory course in differential geometry and the Atiyah-Singer index theorem

An introductory course in differential geometry and the Atiyah-Singer index theorem
by

Publisher: Binghamton University
Number of pages: 137

Description:
This is a lecture-based class on the celebrated Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.

This document is no more available for free.

Similar books

Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(7942 views)
Book cover: Ricci-Hamilton Flow on SurfacesRicci-Hamilton Flow on Surfaces
by - Tsinghua University
Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.
(4484 views)
Book cover: Triangles, Rotation, a Theorem and the JackpotTriangles, Rotation, a Theorem and the Jackpot
by - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(4047 views)
Book cover: Lectures on Fibre Bundles and Differential GeometryLectures on Fibre Bundles and Differential Geometry
by - Tata Institute of Fundamental Research
From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).
(4983 views)