Logo

An introductory course in differential geometry and the Atiyah-Singer index theorem

Small book cover: An introductory course in differential geometry and the Atiyah-Singer index theorem

An introductory course in differential geometry and the Atiyah-Singer index theorem
by

Publisher: Binghamton University
Number of pages: 137

Description:
This is a lecture-based class on the celebrated Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.

This document is no more available for free.

Similar books

Book cover: Lectures on Fibre Bundles and Differential GeometryLectures on Fibre Bundles and Differential Geometry
by - Tata Institute of Fundamental Research
From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).
(6451 views)
Book cover: Lectures on Exterior Differential SystemsLectures on Exterior Differential Systems
by - Tata Institute of Fundamental Research
Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.
(7837 views)
Book cover: Cusps of Gauss MappingsCusps of Gauss Mappings
by - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(11330 views)
Book cover: Triangles, Rotation, a Theorem and the JackpotTriangles, Rotation, a Theorem and the Jackpot
by - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(5438 views)