**Langlands Correspondence for Loop Groups**

by Edward Frenkel

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521854431**ISBN-13**: 9780521854436**Number of pages**: 393

**Description**:

This book provides an excellent detailed review of an important aspect of the geometric Langlands program, namely, the role of representation theory of affine Kac-Moody algebras (or loop algebras). It provides clear and insightful introductions to such notions as vertex algebras, the Langlands dual group, connections on the punctured disc, representation theory of loop algebras, etc.

Download or read it online for free here:

**Download link**

(1.9MB, PDF)

## Similar books

**Predicative Arithmetic**

by

**Edward Nelson**-

**Princeton Univ Pr**

The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.

(

**12370**views)

**Algorithms for Modular Elliptic Curves**

by

**J. E. Cremona**-

**Cambridge University Press**

The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.

(

**10832**views)

**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by

**Kenneth A. Ribet, William A. Stein**-

**University of Washington**

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...

(

**5322**views)

**Elliptic Curves over Function Fields**

by

**Douglas Ulmer**-

**arXiv**

The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

(

**7018**views)