Logo

Probability: Theory and Examples

Large book cover: Probability: Theory and Examples

Probability: Theory and Examples
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521765390
ISBN-13: 9780521765398
Number of pages: 372

Description:
This book is an introduction to probability theory covering laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: A History Of The Mathematical Theory Of ProbabilityA History Of The Mathematical Theory Of Probability
by - Kessinger Publishing, LLC
History of the probability theory from the time of Pascal to that of Laplace (1865). Todhunter gave a close account of the difficulties involved and the solutions offered by each investigator. His studies were thorough and fully documented.
(12310 views)
Book cover: Almost None of the Theory of Stochastic ProcessesAlmost None of the Theory of Stochastic Processes
by - Carnegie Mellon University
Text for a second course in stochastic processes. It is assumed that you have had a first course on stochastic processes, using elementary probability theory. You will study stochastic processes within the framework of measure-theoretic probability.
(6635 views)
Book cover: Probability on Trees and NetworksProbability on Trees and Networks
by - Cambridge University Press
This book is concerned with certain aspects of discrete probability on infinite graphs that are currently in vigorous development. Of course, finite graphs are analyzed as well, but usually with the aim of understanding infinite graphs and networks.
(1062 views)
Book cover: Advanced Topics in ProbabilityAdvanced Topics in Probability
by - New York University
Topics: Brownian Motion; Diffusion Processes; Weak convergence and Compactness; Stochastic Integrals and Ito's formula; Markov Processes, Kolmogorov's equations; Stochastic Differential Equations; Existence and Uniqueness; Girsanov Formula; etc.
(5118 views)