**Probability: Theory and Examples**

by Rick Durrett

**Publisher**: Cambridge University Press 2010**ISBN/ASIN**: 0521765390**ISBN-13**: 9780521765398**Number of pages**: 372

**Description**:

This book is an introduction to probability theory covering laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Recent Progress on the Random Conductance Model**

by

**Marek Biskup**-

**arXiv**

Recent progress on understanding of the Random Conductance Model is reviewed and commented. A particular emphasis is on the results on the scaling limit of the random walk among random conductances for almost every realization of the environment.

(

**4796**views)

**Introduction to Probability**

by

**Davar Khoshnevisan, Firas Rassoul-Agha**-

**University of Utah**

This is a first course in undergraduate probability. It covers standard material such as combinatorial problems, random variables, distributions, independence, conditional probability, expected value and moments, law of large numbers, etc.

(

**6817**views)

**Probability, Random Processes, and Ergodic Properties**

by

**Robert M. Gray**-

**Springer**

A self-contained treatment of the theory of probability, random processes. It is intended to lay theoretical foundations for measure and integration theory, and to develop the long term time average behavior of measurements made on random processes.

(

**8960**views)

**Random Walks and Electric Networks**

by

**Peter G. Doyle, J. Laurie Snell**-

**Dartmouth College**

In this work we will look at the interplay of physics and mathematics in terms of an example where the mathematics involved is at the college level. The example is the relation between elementary electric network theory and random walks.

(

**1527**views)