Logo

Probability: Theory and Examples

Large book cover: Probability: Theory and Examples

Probability: Theory and Examples
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521765390
ISBN-13: 9780521765398
Number of pages: 372

Description:
This book is an introduction to probability theory covering laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Introduction to ProbabilityIntroduction to Probability
by - American Mathematical Society
The textbook for an introductory course in probability for students of mathematics, physics, engineering, social sciences, and computer science. It presents a thorough treatment of techniques necessary for a good understanding of the subject.
(62193 views)
Book cover: Probability Theory and Stochastic Processes with ApplicationsProbability Theory and Stochastic Processes with Applications
by - Overseas Press
This text covers material of a basic probability course, discrete stochastic processes including Martingale theory, continuous time stochastic processes like Brownian motion and stochastic differential equations, estimation theory, and more.
(9520 views)
Book cover: Introduction to ProbabilityIntroduction to Probability
by - University of Utah
This is a first course in undergraduate probability. It covers standard material such as combinatorial problems, random variables, distributions, independence, conditional probability, expected value and moments, law of large numbers, etc.
(10032 views)
Book cover: ProbabilityProbability
by - Trinity College
This material was made available for the course Probability of the Mathematical Tripos. Contents: Basic Concepts; Axiomatic Probability; Discrete Random Variables; Continuous Random Variables; Inequalities, Limit Theorems and Geometric Probability.
(4666 views)