Logo

Bayesian Reasoning and Machine Learning

Large book cover: Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521518148
ISBN-13: 9780521518147
Number of pages: 644

Description:
The book is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models.

Home page url

Download or read it online for free here:
Download link
(15MB, PDF)

Similar books

Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(2109 views)
Book cover: Lecture Notes in Machine LearningLecture Notes in Machine Learning
by - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(5682 views)
Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(5282 views)
Book cover: Reinforcement Learning: An IntroductionReinforcement Learning: An Introduction
by - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(20820 views)