**Combinatorial Knot Theory**

by Louis H. Kauffman

**Publisher**: University of Illinois at Chicago 2009**Number of pages**: 159

**Description**:

This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.

Download or read it online for free here:

**Download link**

(3.6MB, PDF)

## Similar books

**Lectures on Polyhedral Topology**

by

**John R. Stallings**-

**Tata Institute of Fundamental Research**

These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.

(

**4138**views)

**Exotic Homology Manifolds**

by

**Frank Quinn, Andrew Ranicki**

Homology manifolds were developed in the 20th century to give a precise setting for Poincare's ideas on duality. They are investigated using algebraic and geometric methods. This volume is the proceedings of a workshop held in 2003.

(

**4356**views)

**The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds**

by

**A.A. Ranicki, et al,**-

**Springer**

The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.

(

**4833**views)

**Notes on String Topology**

by

**Ralph L. Cohen, Alexander A. Voronov**-

**arXiv**

This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.

(

**5775**views)