Logo

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Large book cover: Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators
by

Publisher: Birkhäuser
ISBN/ASIN: 376438509X
ISBN-13: 9783764385095

Description:
This is a four-hundred-page book on the topic of pseudodifferential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. The first two parts of the book are accessible to graduate students with a decent background in Analysis. The third chapter is directed more to researchers.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Complex Variables: Second EditionComplex Variables: Second Edition
by - Dover Publications
The text for advanced undergraduates and graduates, it offers a concise treatment, explanations, problems and solutions. Topics include elementary theory, general Cauchy theorem and applications, analytic functions, and prime number theorem.
(14210 views)
Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(11316 views)
Book cover: Hyperbolic FunctionsHyperbolic Functions
by - John Wiley & Sons
College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.
(10089 views)
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
(3850 views)