**Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators**

by Nicolas Lerner

**Publisher**: BirkhĂ¤user 2009**ISBN/ASIN**: 376438509X**ISBN-13**: 9783764385095

**Description**:

This is a four-hundred-page book on the topic of pseudodifferential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. The first two parts of the book are accessible to graduate students with a decent background in Analysis. The third chapter is directed more to researchers.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Riemann Matrices**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

A systematic study of Riemann matrices which arise in a natural way from the theory of abelian functions. Contents: Abelian Functions; Commutator-algebra of a R-matrix; Division algebras over Q with a positive involution; Cyclic algebras; etc.

(

**5797**views)

**Hyperbolic Functions**

by

**James McMahon**-

**John Wiley & Sons**

College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.

(

**8876**views)

**A First Course in Complex Analysis**

by

**M. Beck, G. Marchesi, D. Pixton**-

**San Francisco State University**

These are the lecture notes of a one-semester undergraduate course: complex numbers, differentiation, functions, integration, Cauchy's theorem, harmonic functions, power series, Taylor and Laurent series, isolated singularities, etc.

(

**34897**views)

**Introduction to Complex Analysis**

by

**W W L Chen**-

**Macquarie University**

Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.

(

**11794**views)