**Introduction to Differential Equations**

by Jeffrey R. Chasnov

**Publisher**: The Hong Kong University of Science &Technology 2010**Number of pages**: 126

**Description**:

Contents: A short mathematical review; Introduction to odes; First-order odes; Second-order odes, constant coefficients; The Laplace transform; Series solutions; Systems of equations; Bifurcation theory; Partial differential equations.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Notes on Differential Equations**

by

**Bob Terrell**

Introductory notes on ordinary and partial differential equations for engineers. The text covers only the most important ideas. Assumed background is calculus and a little physics. Linear algebra is introduced in four of the lectures.

(

**12651**views)

**Differential Equations From The Algebraic Standpoint**

by

**Joseph Fels Ritt**-

**The American Mathematical Society**

We shall be concerned, in this monograph, with systems of differential equations, ordinary or partial, which are algebraic in the unknowns and their derivatives. The algebraic side of the theory of such systems seems is developed in this book.

(

**3507**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**7802**views)

**Topics in dynamics I: Flows**

by

**Edward Nelson**-

**Princeton University Press**

Lecture notes for a course on differential equations covering differential calculus, Picard's method, local structure of vector fields, sums and Lie products, self-adjoint operators on Hilbert space, commutative multiplicity theory, and more.

(

**14230**views)