Logo

Notes on Basic 3-Manifold Topology

Small book cover: Notes on Basic 3-Manifold Topology

Notes on Basic 3-Manifold Topology
by


Number of pages: 61

Description:
The little that exists of the 3-manifolds book (see below for a table of contents) is rather crude and unpolished, and doesn't cover a lot of material, but it does contain a few things that aren't readily available elsewhere, like the elementary form of the Jaco-Shalen/Johannson torus decomposition theorem.

Home page url

Download or read it online for free here:
Download link
(0.4MB, PDF)

Similar books

Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(2446 views)
Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(4898 views)
Book cover: Algebraic and Geometric TopologyAlgebraic and Geometric Topology
by - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
(11036 views)
Book cover: Algebraic L-theory and Topological ManifoldsAlgebraic L-theory and Topological Manifolds
by - Cambridge University Press
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.
(5001 views)