**Spacetime and Fields**

by Nikodem J. Poplawski

**Publisher**: arXiv 2009**Number of pages**: 114

**Description**:

We present a self-contained introduction to the classical theory of spacetime and fields. The order of the presentation is: 1. Spacetime (tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors), 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field).

Download or read it online for free here:

**Download link**

(890KB, PDF)

## Similar books

**Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity**

by

**Joseph C. Kolecki**-

**Glenn Research Center**

Tensor analysis is useful because of its great generality and compact notation. This monograph provides a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies.

(

**11020**views)

**Advanced General Relativity**

by

**Sergei Winitzki**-

**Google Sites**

Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.

(

**12297**views)

**Post-Newtonian Theory for the Common Reader**

by

**Eric Poisson**-

**University of Guelph**

From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.

(

**10148**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**14064**views)