**An Advanced Course in General Relativity**

by Eric Poisson

**Publisher**: University of Guelph 2002**Number of pages**: 190

**Description**:

These lecture notes are suitable for a one-semester course at the graduate level. Table of contents: Fundamentals; Geodesic congruences; hypersurfaces; Lagrangian and Hamiltonian formulations of general relativity; Black holes.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**17008**views)

**Partial Differential Equations of Physics**

by

**Robert Geroch**-

**arXiv**

All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.

(

**11226**views)

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**3763**views)

**Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity**

by

**Joseph C. Kolecki**-

**Glenn Research Center**

Tensor analysis is useful because of its great generality and compact notation. This monograph provides a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies.

(

**6082**views)