Logo

An Advanced Course in General Relativity

Small book cover: An Advanced Course in General Relativity

An Advanced Course in General Relativity
by

Publisher: University of Guelph
Number of pages: 190

Description:
These lecture notes are suitable for a one-semester course at the graduate level. Table of contents: Fundamentals; Geodesic congruences; hypersurfaces; Lagrangian and Hamiltonian formulations of general relativity; Black holes.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Space, Time and Gravitation: An Outline of the General Relativity TheorySpace, Time and Gravitation: An Outline of the General Relativity Theory
by - Cambridge University Press
The author gives an account of general relativity theory without introducing anything very technical in the way of mathematics, physics, or philosophy. It is hoped that the book may also appeal to those who have gone into the subject more deeply.
(7710 views)
Book cover: A No-Nonsense Introduction to General RelativityA No-Nonsense Introduction to General Relativity
by
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.
(2610 views)
Book cover: Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physicsMetric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics
by - arXiv
We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research...
(601 views)
Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(10196 views)