Logo

Lectures on The Riemann Zeta-Function

Small book cover: Lectures on The Riemann Zeta-Function

Lectures on The Riemann Zeta-Function
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: B0007J92N0
Number of pages: 154

Description:
The aim of these lectures is to provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here. The exposition is self-contained, and required a preliminary knowledge of only the elements of function theory.

Download or read it online for free here:
Download link
(650KB, PDF)

Similar books

Book cover: The Elementary Properties of the Elliptic FunctionsThe Elementary Properties of the Elliptic Functions
by - Macmillan
This textbook will supply the wants of those students who, for reasons connected with examinations or otherwise, wish to have a knowledge of the elements of Elliptic Functions, not including the Theory of Transformations and the Theta Functions.
(3860 views)
Book cover: Elliptic Functions and Elliptic CurvesElliptic Functions and Elliptic Curves
by - Institut de Mathematiques de Jussieu
Contents: Introduction; Abel's Method; A Crash Course on Riemann Surfaces; Cubic curves; Elliptic functions; Theta functions; Construction of elliptic functions; Lemniscatology or Complex Multiplication by Z[i]; Group law on smooth cubic curves.
(4106 views)
Book cover: Lectures on The Theory of Functions of Several Complex VariablesLectures on The Theory of Functions of Several Complex Variables
by - Tata Institute of Fundamental Research
Contents: Cauchy's formula and elementary consequences; Reinhardt domains and circular domains; Complex analytic manifolds; Analytic Continuation; Envelopes of Holomorphy; Domains of Holomorphy - Convexity Theory; d''-cohomology on the cube; etc.
(6444 views)
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
(2385 views)