**Lectures on The Riemann Zeta-Function**

by K. Chandrasekharan

**Publisher**: Tata Institute of Fundamental Research 1953**ISBN/ASIN**: B0007J92N0**Number of pages**: 154

**Description**:

The aim of these lectures is to provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here. The exposition is self-contained, and required a preliminary knowledge of only the elements of function theory.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**The Elementary Properties of the Elliptic Functions**

by

**Alfred Cardew Dixon**-

**Macmillan**

This textbook will supply the wants of those students who, for reasons connected with examinations or otherwise, wish to have a knowledge of the elements of Elliptic Functions, not including the Theory of Transformations and the Theta Functions.

(

**3860**views)

**Elliptic Functions and Elliptic Curves**

by

**Jan Nekovar**-

**Institut de Mathematiques de Jussieu**

Contents: Introduction; Abel's Method; A Crash Course on Riemann Surfaces; Cubic curves; Elliptic functions; Theta functions; Construction of elliptic functions; Lemniscatology or Complex Multiplication by Z[i]; Group law on smooth cubic curves.

(

**4106**views)

**Lectures on The Theory of Functions of Several Complex Variables**

by

**B. Malgrange**-

**Tata Institute of Fundamental Research**

Contents: Cauchy's formula and elementary consequences; Reinhardt domains and circular domains; Complex analytic manifolds; Analytic Continuation; Envelopes of Holomorphy; Domains of Holomorphy - Convexity Theory; d''-cohomology on the cube; etc.

(

**6444**views)

**Complex Analysis**

by

**Christian Berg**-

**Kobenhavns Universitet**

Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.

(

**2385**views)