Logo

Modern Computational Methods in Solids

Small book cover: Modern Computational Methods in Solids

Modern Computational Methods in Solids
by

Publisher: University of Wyoming
Number of pages: 99

Description:
The purpose of this course is to introduce students to a series of paradigmatic physical problems in condensed matter, using the computer to solve them. The course will feel like a natural extension of introductory condensed matter, with extra degrees of complexity that make the problems analytically intractable to some extent. Therefore, it will also serve as a complementary condensed matter course.

Download or read it online for free here:
Download link
(520KB, PDF)

Similar books

Book cover: The Universe in a Helium DropletThe Universe in a Helium Droplet
by - Oxford University Press
There are fundamental relations between two vast areas of physics: particle physics and cosmology (micro- and macro-worlds). The main goal of this book is to establish and define the connection of these two fields with condensed matter physics.
(14346 views)
Book cover: Condensed Matter Physics With Light And AtomsCondensed Matter Physics With Light And Atoms
by - arXiv
Various topics at the interface between condensed matter physics and the physics of ultra-cold fermionic atoms in optical lattices are discussed. Lectures given at the Enrico Fermi Summer School on 'Ultracold Fermi Gases' in 2006.
(4409 views)
Book cover: Making, probing and understanding ultracold Fermi gasesMaking, probing and understanding ultracold Fermi gases
by - arXiv
This text summarizes the experimental frontier of ultra cold fermionic gases. It is based on three lectures which one of the authors gave at the Varenna summer school describing the experimental techniques used to study ultracold fermionic gases.
(3962 views)
Book cover: Many-body Physics with Ultracold GasesMany-body Physics with Ultracold Gases
by - arXiv.org
This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, etc.
(2569 views)