**Notes on Differential Geometry**

by Matt Visser

**Publisher**: Victoria University of Wellington 2011**Number of pages**: 246

**Description**:

In this text the author presents an overview of differential geometry, also known as the theory of manifolds. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; Exterior differential forms; Lie derivatives; etc.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Differential Geometry Course Notes**

by

**Richard Koch**-

**University of Oregon**

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

(

**6077**views)

**Course of Differential Geometry**

by

**Ruslan Sharipov**-

**Samizdat Press**

Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.

(

**10269**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**15581**views)

**Differential Geometry in Physics**

by

**Gabriel Lugo**-

**University of North Carolina at Wilmington**

These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.

(

**11857**views)