**Lectures on Mean Periodic Functions**

by J.P. Kahane

**Publisher**: Tata Institute of Fundamental Research 1959**ISBN/ASIN**: B0007J1936**Number of pages**: 165

**Description**:

Mean periodic functions are a generalization of periodic functions. The book considers questions about periodic functions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.

Download or read it online for free here:

**Download link**

(840KB, PDF)

## Similar books

**Chebyshev and Fourier Spectral Methods**

by

**John P. Boyd**-

**Dover Publications**

The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.

(

**13673**views)

**Nonlinear Fourier Analysis**

by

**Terence Tao, Christoph Thiele**-

**arXiv**

The nonlinear Fourier transform is the map from the potential of a one dimensional discrete Dirac operator to the transmission and reflection coefficients thereof. Emphasis is on this being a nonlinear variant of the classical Fourier series.

(

**5063**views)

**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by

**William Elwood Byerly**-

**Ginn and company**

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...

(

**11107**views)

**Harmonic Function Theory**

by

**Sheldon Axler, Paul Bourdon, Wade Ramey**-

**Springer**

A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.

(

**9347**views)