Logo

Nonlinear Physics (Solitons, Chaos, Localization)

Small book cover: Nonlinear Physics (Solitons, Chaos, Localization)

Nonlinear Physics (Solitons, Chaos, Localization)
by

Publisher: Universitaet Konstanz
Number of pages: 181

Description:
This set of lectures describes some of the basic concepts mainly from the angle of condensed matter / statistical mechanics, an area which provided an impressive list of nonlinearly governed phenomena over the last fifty years - starting with the Fermi-Pasta-Ulam numerical experiment and its subsequent interpretation by Zabusky and Kruskal in terms of solitons.

Home page url

Download or read it online for free here:
Download link
(8MB, PDF)

Similar books

Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(4765 views)
Book cover: Mathematics for the Physical SciencesMathematics for the Physical Sciences
by - Dover Publications
The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.
(35693 views)
Book cover: A Window into Zeta and Modular PhysicsA Window into Zeta and Modular Physics
by - Cambridge University Press
This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.
(5501 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(10518 views)