Logo

Statistical Mechanics of Two-dimensional and Geophysical Flows

Small book cover: Statistical Mechanics of Two-dimensional and Geophysical Flows

Statistical Mechanics of Two-dimensional and Geophysical Flows
by

Publisher: arXiv
Number of pages: 137

Description:
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: An Introduction to the Mechanics of FluidsAn Introduction to the Mechanics of Fluids
by - Longmans, Green
In writing this book, while preserving the usual rigour, the endeavour has been made to impart to it by the character of the illustrations and examples, a modern and practical flavour which will render it more widely useful. The calculus is not used.
(6074 views)
Book cover: Lagrangian Solid ModelingLagrangian Solid Modeling
by - viXra
The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles, rather than using a meshed grid. This method avoids the problem of tensile instability seen with Smooth Particle Applied Mechanics.
(2945 views)
Book cover: Fundamentals of Multiphase FlowFundamentals of Multiphase Flow
by - Cambridge University Press
The book for graduate students and researchers at the cutting edge of investigations into the fundamental nature of multiphase flows. It is intended as a reference book for the basic methods used in the treatment of multiphase flows.
(12353 views)
Book cover: Exploring the Biofluiddynamics of Swimming and FlightExploring the Biofluiddynamics of Swimming and Flight
by - Wageningen University
Many organisms move through water or air in order to survive and reproduce. It is useful to analyze fluid motion as a collection of vortices: vortices interact with the moving organism, interact with each other, and evolve independently in time.
(4040 views)