Logo

Exact Sequences in the Algebraic Theory of Surgery

Small book cover: Exact Sequences in the Algebraic Theory of Surgery

Exact Sequences in the Algebraic Theory of Surgery
by

Publisher: Princeton University Press
ISBN/ASIN: 0691082766
ISBN-13: 9780691082769
Number of pages: 881

Description:
One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject, as it was known at the time of publication.

Download or read it online for free here:
Download link
(13MB, PDF)

Similar books

Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(14461 views)
Book cover: Lectures on Sheaf TheoryLectures on Sheaf Theory
by - Tata Institute of Fundamental Research
A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.
(11041 views)
Book cover: Noncommutative Localization in Algebra and TopologyNoncommutative Localization in Algebra and Topology
by - Cambridge University Press
Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.
(10083 views)
Book cover: TopologyTopology
by - Harvard University
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.
(8649 views)