Logo

Periodic Solutions for Evolution Equations

Periodic Solutions for Evolution Equations
by

Publisher: American Mathematical Society
Number of pages: 41

Description:
We study the existence and uniqueness of periodic solutions for evolution equations. First we analyze the one-dimensional case. Then for arbitrary dimensions (finite or not), we consider linear symmetric operators. We also prove the same results for non-linear sub-differential operators...

Home page url

Download or read it online for free here:
Download link
(340KB, PDF)

Similar books

Book cover: A Second Course in Elementary Ordinary Differential EquationsA Second Course in Elementary Ordinary Differential Equations
by - Arkansas Tech University
Calculus of Matrix-Valued Functions of a Real Variable; nth Order Linear Differential Equations; General Solution of nth Order Linear Homogeneous Equations; Fundamental Sets and Linear Independence; Higher Order Homogeneous Linear Equations; etc.
(8873 views)
Book cover: Introduction to the Galois Theory of Linear Differential EquationsIntroduction to the Galois Theory of Linear Differential Equations
by - arXiv
The author's goal was to give the audience an introduction to the algebraic, analytic and algorithmic aspects of the Galois theory of linear differential equations by focusing on some of the main ideas and philosophies and on examples.
(7227 views)
Book cover: The Contraction Mapping Principle and Some ApplicationsThe Contraction Mapping Principle and Some Applications
by - American Mathematical Society
These notes contain various versions of the contraction mapping principle. Several applications to existence theorems in differential and integral equations and variational inequalities are given. Also discussed are Hilbert's projective metric.
(6289 views)
Book cover: Ordinary Differential EquationsOrdinary Differential Equations
by - University of Bristol
This book consists of ten weeks of material given as a course on ordinary differential equations for second year mathematics majors. Rather than seeking to find specific solutions, we seek to understand how all solutions are related in phase space.
(3078 views)