A Course in Universal Algebra
by S. Burris, H.P. Sankappanavar
Publisher: Springer-Verlag 1982
ISBN/ASIN: 0387905782
ISBN-13: 9780387905785
Number of pages: 331
Description:
This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed suficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests: a brief but substantial introduction to lattices, the most general and fundamental notions of universal algebra, a careful development of Boolean algebras, discriminator varieties, the introduction to some basic concepts, tools, and results of model theory.
Download or read it online for free here:
Download link
(1.2MB, PDF)
Similar books
Algebraic Logicby H. Andreka, I. Nemeti, I. Sain
Part I of the book studies algebras which are relevant to logic. Part II deals with the methodology of solving logic problems by (i) translating them to algebra, (ii) solving the algebraic problem, and (iii) translating the result back to logic.
(19404 views)
Set Theoretic Approach to Algebraic Structures in Mathematicsby W. B. Vasantha Kandasamy, Florentin Smarandache - Educational Publisher
This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.
(13522 views)
Workbook in Higher Algebraby David Surowski
A set of notes for a Higher Algebra course. It covers Group Theory, Field and Galois Theory, Elementary Factorization Theory, Dedekind Domains, Module Theory, Ring Structure Theory, Tensor Products, Zorn’s Lemma and some Applications.
(19250 views)
Clifford Algebra, Geometric Algebra, and Applicationsby Douglas Lundholm, Lars Svensson - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(17120 views)