**A Course in Universal Algebra**

by S. Burris, H.P. Sankappanavar

**Publisher**: Springer-Verlag 1982**ISBN/ASIN**: 0387905782**ISBN-13**: 9780387905785**Number of pages**: 331

**Description**:

This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed suficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests: a brief but substantial introduction to lattices, the most general and fundamental notions of universal algebra, a careful development of Boolean algebras, discriminator varieties, the introduction to some basic concepts, tools, and results of model theory.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Noncommutative Rings**

by

**Michael Artin**

From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.

(

**7019**views)

**Graduate Algebra**

by

**Leonard Evens**-

**Northwestern University**

Contents: Groups; Group actions on sets; Normal series; Ring theory; Modules; Hom and tensor; Field theory; Galois theory; Applications of Galois theory; Infinite extensions; Categories; Multilinear algebra; More ring theory; Localization; etc.

(

**9286**views)

**Commutator Theory for Congruence Modular Varieties**

by

**Ralph Freese, Ralph McKenzie**-

**Cambridge University Press**

This book presents the basic theory of commutators in congruence modular varieties and some of its strongest applications. The authors take an algebraic approach, using some of the shortcuts that Taylor and others have discovered.

(

**8395**views)

**An Invitation to General Algebra and Universal Constructions**

by

**George M. Bergman**-

**Henry Helson**

From the contents: Free groups; Ordered sets, induction, and the Axiom of Choice; Lattices, closure operators, and Galois connections; Categories and functors; Universal constructions in category-theoretic terms; Varieties of algebras; etc.

(

**9759**views)