**Lectures on Forms of Higher Degree**

by J.I. Igusa

**Publisher**: Tata Institute of Fundamental Research 1978**ISBN/ASIN**: B007FD8GNI**Number of pages**: 169

**Description**:

One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the cumulative work of several eminent mathematicians and especially of C.L. Siegel.

Download or read it online for free here:

**Download link**

(890KB, PDF)

## Similar books

**An Introduction to Modular Forms**

by

**Henri Cohen**-

**arXiv.org**

Contents: Functional Equations; Elliptic Functions; Modular Forms and Functions; Hecke Operators: Ramanujan's discoveries; Euler Products, Functional Equations; Modular Forms on Subgroups of Gamma; More General Modular Forms; Some Pari/GP Commands.

(

**4895**views)

**Lectures on Analytic Number Theory**

by

**H. Rademacher**-

**Tata Institute of Fundamental Research**

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. Contents: Formal Power Series; Analysis; Analytic theory of partitions; Representation by squares.

(

**9089**views)

**On Advanced Analytic Number Theory**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

During the winter semester 1959/60, the author delivered a series of lectures on Analytic Number Theory. It was his aim to introduce his hearers to some of the important and beautiful ideas which were developed by L. Kronecker and E. Hecke.

(

**10874**views)

**Lectures on The Riemann Zeta-Function**

by

**K. Chandrasekharan**-

**Tata Institute of Fundamental Research**

These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.

(

**12735**views)