**Lectures on Forms of Higher Degree**

by J.I. Igusa

**Publisher**: Tata Institute of Fundamental Research 1978**ISBN/ASIN**: B007FD8GNI**Number of pages**: 169

**Description**:

One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the cumulative work of several eminent mathematicians and especially of C.L. Siegel.

Download or read it online for free here:

**Download link**

(890KB, PDF)

## Similar books

**Lectures on The Riemann Zeta-Function**

by

**K. Chandrasekharan**-

**Tata Institute of Fundamental Research**

These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.

(

**6979**views)

**Diophantine Analysis**

by

**R. D. Carmichael**-

**John Wiley & Sons**

The author's purpose has been to supply the reader with a convenient introduction to Diophantine Analysis. No attempt has been made to include all special results, but a large number of them are to be found both in the text and in the exercises.

(

**7342**views)

**Analytic Number Theory**

by

**Giuseppe Rauti**-

**viXra**

The aim of this paper is to present some topics in analytic number theory: classical results in prime number theory, the Dirichlet's theorem on primes in arithmetic progressions, the analytic proof of the prime number theorem by D. J. Newman, etc.

(

**2875**views)

**Lectures on Sieve Methods**

by

**H.E. Richert**-

**Tata Institute of Fundamental Research**

The aim of this text is to provide an introduction to modern sieve methods, i.e. to various forms of both the large sieve (part I of the book) and the small sieve (part II), as well as their interconnections and applications.

(

**4456**views)