**Lectures on Representations of Complex Semi-Simple Lie Groups**

by Thomas J. Enright

**Publisher**: Tata Institute of Fundamental Research 1981**ISBN/ASIN**: 0387108297**ISBN-13**: 9780387108292**Number of pages**: 94

**Description**:

The purpose of the lectures was to describe a factorial correspondence between the theory of admissible representations for a complex semisimple Lie group and the theory of highest weight modules for a semisimple Lie algebra. A detailed description of the main results of this correspondence is given in section one.

Download or read it online for free here:

**Download link**

(470KB, PDF)

## Similar books

**Representations of Reductive p-adic Groups**

by

**Fiona Murnaghan**-

**University of Toronto**

Contents: Valuations and local fields; Smooth representations of locally compact totally disconnected groups; Haar measure, convolution, and characters of admissible representations; Induced representations - general properties; etc.

(

**4447**views)

**Introduction to Representation Theory**

by

**Fiona Murnaghan**-

**University of Toronto**

Contents: Representation Theory of Groups - Algebraic Foundations; Representations of Finite Groups; Representations of SL2(Fq); Representations of Finite Groups of Lie Type; Topological Groups, Representations, and Haar Measure; etc.

(

**4831**views)

**Lectures on Representation Theory and Invariant Theory**

by

**William Crawley-Boevey**-

**University of Leeds**

These are lectures on the symmetric group, the general linear group and invariant theory. The course covered as much of the classical theory as time allowed. The text requires some knowledge of rings and modules, character theory, affine varieties.

(

**6931**views)

**Representation Theory of Compact Groups**

by

**Michael Ruzhansky, Ville Turunen**-

**Aalto TKK**

Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.

(

**6033**views)