**Lectures on Representations of Complex Semi-Simple Lie Groups**

by Thomas J. Enright

**Publisher**: Tata Institute of Fundamental Research 1981**ISBN/ASIN**: 0387108297**ISBN-13**: 9780387108292**Number of pages**: 94

**Description**:

The purpose of the lectures was to describe a factorial correspondence between the theory of admissible representations for a complex semisimple Lie group and the theory of highest weight modules for a semisimple Lie algebra. A detailed description of the main results of this correspondence is given in section one.

Download or read it online for free here:

**Download link**

(470KB, PDF)

## Similar books

**Introduction to Representations of Real Semisimple Lie Groups**

by

**Matvei Libine**-

**arXiv**

These are lecture notes for a one semester introductory course I gave at Indiana University. The goal was to make this exposition as clear and elementary as possible. A particular emphasis is given on examples involving SU(1,1).

(

**7604**views)

**Lectures on Some Aspects of p-Adic Analysis**

by

**F. Bruhat**-

**Tata Institute of Fundamental Research**

The text covers the classical theory of valuated fields, results about representations of classical groups over a locally compact valuated field, and Dwork's proof of the rationality of the zeta function of an algebraic variety over a finite field.

(

**8735**views)

**An Elementary Introduction to Groups and Representations**

by

**Brian C. Hall**-

**arXiv**

An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.

(

**19558**views)

**Lectures on Representation Theory and Invariant Theory**

by

**William Crawley-Boevey**-

**University of Leeds**

These are lectures on the symmetric group, the general linear group and invariant theory. The course covered as much of the classical theory as time allowed. The text requires some knowledge of rings and modules, character theory, affine varieties.

(

**12362**views)