Logo

Topics in Algebraic Combinatorics

Small book cover: Topics in Algebraic Combinatorics

Topics in Algebraic Combinatorics
by

Publisher: MIT
Number of pages: 127

Description:
Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; The Matrix-Tree Theorem; Eulerian digraphs and oriented trees; Cycles, bonds, and electrical networks; etc.

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Foundations of Combinatorics with ApplicationsFoundations of Combinatorics with Applications
by - Dover Publications
This introduction to combinatorics, the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. Some ability to construct proofs is assumed.
(5115 views)
Book cover: Combinatory AnalysisCombinatory Analysis
by - Cambridge University Press
The object of this work is to present an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine ...
(1522 views)
Book cover: Combinatorial Maps: TutorialCombinatorial Maps: Tutorial
by - Latvian University
Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...
(2012 views)
Book cover: An  Introduction to Combinatorics and Graph TheoryAn Introduction to Combinatorics and Graph Theory
by - Whitman College
The book covers the classic parts of Combinatorics and graph theory, with some recent progress in the area. Contents: Fundamentals; Inclusion-Exclusion; Generating Functions; Systems of Distinct Representatives; Graph Theory; Polya-Redfield Counting.
(681 views)