**Topics in Algebraic Combinatorics**

by Richard P. Stanley

**Publisher**: MIT 2013**Number of pages**: 127

**Description**:

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; The Matrix-Tree Theorem; Eulerian digraphs and oriented trees; Cycles, bonds, and electrical networks; etc.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Algebraic and Geometric Methods in Enumerative Combinatorics**

by

**Federico Ardila**-

**arXiv**

The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.

(

**2709**views)

**Combinatorial Theory**

by

**Gian-Carlo Rota**

In 1998, Gian-Carlo Rota gave his famous course at MIT. John N. Guidi took notes in a verbatim manner conveying the substance of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

(

**1173**views)

**Combinatory Analysis**

by

**Percy A. MacMahon**-

**Cambridge University Press**

The object of this work is to present an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine ...

(

**1989**views)

**Foundations of Combinatorics with Applications**

by

**Edward A. Bender, S. Gill Williamson**-

**Dover Publications**

This introduction to combinatorics, the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. Some ability to construct proofs is assumed.

(

**5552**views)