Logo

Second-order Ordinary Differential Equations

Small book cover: Second-order Ordinary Differential Equations

Second-order Ordinary Differential Equations
by

Publisher: Bookboon
ISBN-13: 9788776819729
Number of pages: 181

Description:
This text provides an introduction to all the relevant material normally encountered at university level: series solution, special functions (Bessel, etc.), Sturm-Liouville theory (involving the appearance of eigenvalues and eigenfunctions) and the definition, properties and use of various integral transforms (Fourier, Laplace, etc.). Numerous worked examples are provided throughout.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Lectures on Analytic Differential EquationsLectures on Analytic Differential Equations
by - American Mathematical Society
A graduate-level textbook and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. The book includes self-contained demonstrations of several fundamental results.
(12207 views)
Book cover: Ordinary Differential EquationsOrdinary Differential Equations
by - University of Bristol
This book consists of ten weeks of material given as a course on ordinary differential equations for second year mathematics majors. Rather than seeking to find specific solutions, we seek to understand how all solutions are related in phase space.
(4313 views)
Book cover: Nonlinear Analysis and Differential EquationsNonlinear Analysis and Differential Equations
by - University of Utah
The intent of this set of notes is to present several of the important existence theorems for solutions of various types of problems associated with differential equations and provide qualitative and quantitative descriptions of solutions.
(10594 views)
Book cover: Periodic Solutions for Evolution EquationsPeriodic Solutions for Evolution Equations
by - American Mathematical Society
We study the existence and uniqueness of periodic solutions for evolution equations. We analyze the one-dimensional case, then for arbitrary dimensions. We consider linear symmetric operators. We prove the same results for non-linear operators.
(6935 views)