Logo

Second-order Ordinary Differential Equations

Small book cover: Second-order Ordinary Differential Equations

Second-order Ordinary Differential Equations
by

Publisher: Bookboon
ISBN-13: 9788776819729
Number of pages: 181

Description:
This text provides an introduction to all the relevant material normally encountered at university level: series solution, special functions (Bessel, etc.), Sturm-Liouville theory (involving the appearance of eigenvalues and eigenfunctions) and the definition, properties and use of various integral transforms (Fourier, Laplace, etc.). Numerous worked examples are provided throughout.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: The Contraction Mapping Principle and Some ApplicationsThe Contraction Mapping Principle and Some Applications
by - American Mathematical Society
These notes contain various versions of the contraction mapping principle. Several applications to existence theorems in differential and integral equations and variational inequalities are given. Also discussed are Hilbert's projective metric.
(4794 views)
Book cover: Elementary Differential EquationsElementary Differential Equations
by - Brooks Cole
This text has been written in clear and accurate language that students can read and comprehend. The author has minimized the number of explicitly state theorems and definitions, in favor of dealing with concepts in a more conversational manner.
(2180 views)
Book cover: Ordinary Differential EquationsOrdinary Differential Equations
by - National University of Singapore
From the table of contents: First Order Differential Equations; Linear Differential Equations; Second Order Linear Differential Equations; Linear Differential Systems; Power Series Solutions; Fundamental Theory of Ordinary Differential Equations.
(5286 views)
Book cover: Periodic Solutions for Evolution EquationsPeriodic Solutions for Evolution Equations
by - American Mathematical Society
We study the existence and uniqueness of periodic solutions for evolution equations. We analyze the one-dimensional case, then for arbitrary dimensions. We consider linear symmetric operators. We prove the same results for non-linear operators.
(4248 views)