Logo

A First Encounter with Machine Learning

Small book cover: A First Encounter with Machine Learning

A First Encounter with Machine Learning
by

Publisher: University of California Irvine
Number of pages: 93

Description:
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A first read to wet the appetite so to speak, a prelude to the more technical and advanced text books.

Home page url

Download or read it online for free here:
Download link
(420KB, PDF)

Similar books

Book cover: Machine LearningMachine Learning
by - InTech
Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.
(9094 views)
Book cover: The Elements of Statistical Learning: Data Mining, Inference, and PredictionThe Elements of Statistical Learning: Data Mining, Inference, and Prediction
by - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(22598 views)
Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(4607 views)
Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(3210 views)