Logo

A First Encounter with Machine Learning

Small book cover: A First Encounter with Machine Learning

A First Encounter with Machine Learning
by

Publisher: University of California Irvine
Number of pages: 93

Description:
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A first read to wet the appetite so to speak, a prelude to the more technical and advanced text books.

Home page url

Download or read it online for free here:
Download link
(420KB, PDF)

Similar books

Book cover: An Introduction to Statistical LearningAn Introduction to Statistical Learning
by - Springer
This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.
(3501 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(2409 views)
Book cover: A Course in Machine LearningA Course in Machine Learning
by - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(4327 views)
Book cover: Machine Learning and Data Mining: Lecture NotesMachine Learning and Data Mining: Lecture Notes
by - University of Toronto
Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.
(3501 views)