Lecture Notes on Free Probability

Small book cover: Lecture Notes on Free Probability

Lecture Notes on Free Probability

Publisher: arXiv
Number of pages: 100

Contents: Non-commutative Probability Spaces; Distributions; Freeness; Asymptotic Freeness of Random Matrices; Asymptotic Freeness of Haar Unitary Matrices; Free Products of Probability Spaces; Law of Addition; Limit Theorems; Multivariate CLT; Infinitely-Divisible Distributions; Multiplication and S-transform; Products of free random variables; Free Cumulants; Non-crossing partitions and group of permutations; Fundamental Properties of Free Cumulants; Free Cumulants; R-diagonal variables; Brown measure of R-diagonal variables.

Home page url

Download or read it online for free here:
Download link
(650KB, PDF)

Similar books

Book cover: Probability Theory and Stochastic Processes with ApplicationsProbability Theory and Stochastic Processes with Applications
by - Overseas Press
This text covers material of a basic probability course, discrete stochastic processes including Martingale theory, continuous time stochastic processes like Brownian motion and stochastic differential equations, estimation theory, and more.
Book cover: Continuous DistributionsContinuous Distributions
by - BookBoon
Contents: Some theoretical background; Exponential Distribution; The Normal Distribution; Central Limit Theorem; Maxwell distribution; Gamma distribution; Normal distribution and Gamma distribution; Convergence in distribution; 2 distribution; etc.
Book cover: Probability TheoryProbability Theory
by - New York University
These notes are based on a first year graduate course on Probability and Limit theorems given at Courant Institute of Mathematical Sciences. The text covers discrete time processes. A small amount of measure theory is included.
Book cover: ProbabilityProbability
by - Trinity College
This material was made available for the course Probability of the Mathematical Tripos. Contents: Basic Concepts; Axiomatic Probability; Discrete Random Variables; Continuous Random Variables; Inequalities, Limit Theorems and Geometric Probability.