Lecture Notes on Free Probability

Small book cover: Lecture Notes on Free Probability

Lecture Notes on Free Probability

Publisher: arXiv
Number of pages: 100

Contents: Non-commutative Probability Spaces; Distributions; Freeness; Asymptotic Freeness of Random Matrices; Asymptotic Freeness of Haar Unitary Matrices; Free Products of Probability Spaces; Law of Addition; Limit Theorems; Multivariate CLT; Infinitely-Divisible Distributions; Multiplication and S-transform; Products of free random variables; Free Cumulants; Non-crossing partitions and group of permutations; Fundamental Properties of Free Cumulants; Free Cumulants; R-diagonal variables; Brown measure of R-diagonal variables.

Home page url

Download or read it online for free here:
Download link
(650KB, PDF)

Similar books

Book cover: Probability CourseProbability Course
by - David Ellerman
In 1999, Gian-Carlo Rota gave his famous course, Probability, at MIT for the last time. The late John N. Guidi taped the lectures and took notes which he then wrote up in a verbatim manner conveying the substance and the atmosphere of the course.
Book cover: A Treatise on ProbabilityA Treatise on Probability
by - Macmillan and co
From the table of contents: Fundamental ideas - The Meaning of Probability, The Measurement of Probabilities; Fundamental theorems; Induction and analogy; Some philosophical applications of probability; The foundations of statistical inference, etc.
Book cover: An Introduction to Probability and Random ProcessesAn Introduction to Probability and Random Processes
The purpose of the text is to learn to think probabilistically. The book starts by giving a bird's-eye view of probability, it first examines a number of the great unsolved problems of probability theory to get a feeling for the field.
Book cover: Introduction to ProbabilityIntroduction to Probability
by - University of Utah
This is a first course in undergraduate probability. It covers standard material such as combinatorial problems, random variables, distributions, independence, conditional probability, expected value and moments, law of large numbers, etc.