Logo

An Inquiry-Based Introduction to Proofs

Small book cover: An Inquiry-Based Introduction to Proofs

An Inquiry-Based Introduction to Proofs
by

Publisher: Saint Michael's College
Number of pages: 23

Description:
Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Home page url

Download or read it online for free here:
Download link
(200KB, PDF)

Similar books

Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
(11521 views)
Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.
(17577 views)
Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
(11480 views)
Book cover: Proofs in MathematicsProofs in Mathematics
by - Interactive Mathematics Miscellany and Puzzles
I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.
(9652 views)