An Inquiry-Based Introduction to Proofs

Small book cover: An Inquiry-Based Introduction to Proofs

An Inquiry-Based Introduction to Proofs

Publisher: Saint Michael's College
Number of pages: 23

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Home page url

Download or read it online for free here:
Download link
(200KB, PDF)

Similar books

Book cover: Basic Concepts of MathematicsBasic Concepts of Mathematics
by - The Trillia Group
The book will help students complete the transition from purely manipulative to rigorous mathematics. It covers basic set theory, induction, quantifiers, functions and relations, equivalence relations, properties of the real numbers, fields, etc.
Book cover: Proofs and Concepts: the fundamentals of abstract mathematicsProofs and Concepts: the fundamentals of abstract mathematics
by - University of Lethbridge
This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.
Book cover: An Introduction to Higher MathematicsAn Introduction to Higher Mathematics
by - Whitman College
Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).
Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.