Logo

Category Theory for Scientists

Small book cover: Category Theory for Scientists

Category Theory for Scientists
by

Publisher: arXiv
Number of pages: 261

Description:
There are many books designed to introduce category theory to either a mathematical audience or a computer science audience. In this book, our audience is the broader scientific community. We attempt to show that category theory can be applied throughout the sciences as a framework for modeling phenomena and communicating results. In order to target the scientific audience, this book is example-based rather than proof-based.

Home page url

Download or read it online for free here:
Download link
(4.7MB, PDF)

Similar books

Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(5999 views)
Book cover: Seven Sketches in Compositionality: An Invitation to Applied Category TheorySeven Sketches in Compositionality: An Invitation to Applied Category Theory
by - arXiv.org
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. The tour takes place over seven sketches, such as databases, electric circuits, etc, with the exploration of a categorical structure.
(1612 views)
Book cover: Toposes, Triples and TheoriesToposes, Triples and Theories
by - Springer-Verlag
Introduction to toposes, triples and theories and the connections between them. The book starts with an introduction to category theory, then introduces each of the three topics of the title. Exercises provide examples or develop the theory further.
(10046 views)
Book cover: Seminar on Triples and Categorical Homology TheorySeminar on Triples and Categorical Homology Theory
by - Springer
This volume concentrates a) on the concept of 'triple' or standard construction with special reference to the associated 'algebras', and b) on homology theories in general categories, based upon triples and simplicial methods.
(7490 views)