Logo

Category Theory for Scientists

Small book cover: Category Theory for Scientists

Category Theory for Scientists
by

Publisher: arXiv
Number of pages: 261

Description:
There are many books designed to introduce category theory to either a mathematical audience or a computer science audience. In this book, our audience is the broader scientific community. We attempt to show that category theory can be applied throughout the sciences as a framework for modeling phenomena and communicating results. In order to target the scientific audience, this book is example-based rather than proof-based.

Home page url

Download or read it online for free here:
Download link
(4.7MB, PDF)

Similar books

Book cover: Notes on Categories and GroupoidsNotes on Categories and Groupoids
by - Van Nostrand Reinhold
A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.
(9504 views)
Book cover: Combinatorics and Algebra of Tensor CalculusCombinatorics and Algebra of Tensor Calculus
by - arXiv
In this paper, we reveal the combinatorial nature of tensor calculus for strict tensor categories and show that there exists a monad which is described by the coarse-graining of graphs and characterizes the algebraic nature of tensor calculus.
(2039 views)
Book cover: Introduction to Categories and Categorical LogicIntroduction to Categories and Categorical Logic
by - arXiv
These notes provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions.
(6910 views)
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(9482 views)