Analytic Number Theory by Giuseppe Rauti

Small book cover: Analytic Number Theory

Analytic Number Theory

Publisher: viXra
Number of pages: 96

The aim of this paper is to present some topics in analytic number theory: classical results in prime number theory, the Dirichlet's theorem on primes in arithmetic progressions (1837), the analytic proof of the prime number theorem by D. J. Newman (1980), the Riemann Hypothesis (1859); furthermore, a few proofs of results based on the Dirichlet hyperbola method and Iseki-Tatuzawa lemma.

Home page url

Download or read it online for free here:
Download link
(580KB, PDF)

Similar books

Book cover: Lectures on a Method in the Theory of Exponential SumsLectures on a Method in the Theory of Exponential Sums
by - Tata Institute of Fundamental Research
The author presents a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous.
Book cover: On Advanced Analytic Number TheoryOn Advanced Analytic Number Theory
by - Tata Institute of Fundamental Research
During the winter semester 1959/60, the author delivered a series of lectures on Analytic Number Theory. It was his aim to introduce his hearers to some of the important and beautiful ideas which were developed by L. Kronecker and E. Hecke.
Book cover: Lectures on Forms of Higher DegreeLectures on Forms of Higher Degree
by - Tata Institute of Fundamental Research
One of the principal objectives of modern number theory must be to develop the theory of forms of degree more than two,to the same satisfactory level in which the theory of quadratic forms is found today as the work of eminent mathematicians.
Book cover: Lectures on The Riemann Zeta-FunctionLectures on The Riemann Zeta-Function
by - Tata Institute of Fundamental Research
These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.