Logo

Topology by Curtis T. McMullen

Small book cover: Topology

Topology
by

Publisher: Harvard University
Number of pages: 90

Description:
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology: applications; Quotients, gluing and simplicial complexes; Galois theory of covering spaces; Free groups and graphs; Group presentations, amalgamation and gluing.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Special Course in Functional Analysis: (Non-)Commutative TopologySpecial Course in Functional Analysis: (Non-)Commutative Topology
by - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(7303 views)
Book cover: Lecture Notes on Seiberg-Witten InvariantsLecture Notes on Seiberg-Witten Invariants
by - Springer
A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.
(6193 views)
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(9536 views)
Book cover: Topology and Physics: A Historical EssayTopology and Physics: A Historical Essay
by - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
(9330 views)